Kinetic Study of the Intermolecular Interaction between 2-Phenoxypropionic Acid and β-Bromo-cyclodextrin Affixed on the Stationary Phase by Liquid Chromatography.
نویسندگان
چکیده
The intermolecular interaction between 2-phenoxypropionic acid and β-bromo-cyclodextrin affixed on the stationary phase surface in a chiral HPLC system was studied by the moment analysis method. At first, pulse response and peak parking experiments were conducted to measure some parameters concerning the column geometry, adsorption equilibrium, and mass-transfer kinetics. Then, the first absolute moment (μ1) and second central moment (μ2') of the elution peaks were analyzed by the moment equations, which were developed by assuming that the reaction kinetics between the solute molecules and the functional ligands can be represented by the Langmuir-type rate equation. Finally, the flow-rate dependence of HETP calculated from μ1 and μ2' was analyzed by using the values of the parameters to determine the association and dissociation rate constants of the intermolecular interaction. It was demonstrated that the combination of the chromatographic experiments and moment analysis is one of the effective strategies for the kinetic study of intermolecular interactions.
منابع مشابه
Chiral recognition mechanisms of four β-blockers by HPLC with Amylose Chiral Stationary Phase
The high performance liquid chromatography (HPLC) enantioseparation of four β-blocking agents metoprolol, bisoprolol, propranolol and atenolol was performed on amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase using n-hexane-ethanol-diethylamine (DEA) as the mobile phase and related chiral recognition mechanisms were discussed. Enantiomeric separation of the fourβ-blockers was ...
متن کاملChiral recognition mechanisms of four β-blockers by HPLC with Amylose Chiral Stationary Phase
The high performance liquid chromatography (HPLC) enantioseparation of four β-blocking agents metoprolol, bisoprolol, propranolol and atenolol was performed on amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase using n-hexane-ethanol-diethylamine (DEA) as the mobile phase and related chiral recognition mechanisms were discussed. Enantiomeric separation of the fourβ-blockers was ...
متن کاملQM/MM Study on the Mechanism of Aminophenol Oxidation by Functionalized β-Cyclodextrin as Oxidase Nanomimic
In this study, functionalized β-cyclodextrin (β-CD) by aldehyde group was investigated as an oxidase enzyme mimic for the amino phenol oxidation. All calculations were performed by GAUSSIAN 09 package using two layers ONIOM method at the ONIOM (MPW1PW91/6-311++G(d,p)/UFF) level. In the first step, H2O2 is encapsulated in the hydrophobic cavity. In the second step, H2<...
متن کاملPerformance of 2-Amino Tetraphenyl Porphyrin as Stationary Phase in RP-HPLC of Amino Acids
The search for new stationary phases has been one of the predominant concerns in high performance liquid chromatography (HPLC) in order to achieve better resolutions, longer column lives, and reduce the time of analysis. A chromatographic packing for separation of underivatized amino acids (AAs) were prepared by dynamically coating 2-amino tetraphenyl prophyrin (atpp) on a C-18 reversed-pha...
متن کاملA computational chemistry investigation of the intermolecular interaction between ozone and isothiocyanic acid (HNCS)
The binding energy and geometrical structure of all the possible dimeric systems of isothiocyanic acid (HNCS) with ozone have been investigated in the gas phase, theoretically. Six minima located on the singlet potential energy surface of the HNCS–ozone system at the MP2 level with binding energies (corrected with ZPE and BSSE) in the range 492.29–531.40 kcal/mol. All intermolecular interaction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
دوره 31 8 شماره
صفحات -
تاریخ انتشار 2015